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Abstract. We present a quenched lattice study of the vector form factors at zero-momentum transfer,
fV (0), relevant for the determination of |Vus| from semileptonic K → π�ν (K�3) and Σ− → n�ν decays.
Using suitable double ratios of three-point correlation functions we show that in case of both kaon and
hyperon decays it is possible to calculate the form factor fV (0) at the percent precision, which is the one
required for a significant determination of |Vus|. In case of K�3 decay the leading quenched chiral logarithms
are corrected for by using analytic calculations in quenched chiral perturbation theory. Our final result,
fV (K0π−) = 0.960±0.005stat±0.007syst, where the systematic error does not include the residual quenched
effects, is in good agreement with the estimate made by Leutwyler and Roos. The impact of our result on
the extraction of |Vus| is briefly illustrated.

PACS. 12.15.Hh Determination of CKM matrix elements – 13.20.Eb Semileptonic decays of K mesons –
13.30.Ce Semileptonic decays of baryons – 12.38.Gc Lattice QCD calculations

1 Introduction

The most precise determinations of the CKM matrix el-
ement |Vus| [1] are presently obtained from the semilep-
tonic weak decays of kaons and hyperons. The analysis
of the experimental data on K�3 [2] and hyperon [3] de-
cays can give access to the quantity |Vus| · fV (0), where
fV (0) is the vector form factor at zero-momentum trans-
fer for each decay. A good theoretical control on these
transitions is obtained via the Ademollo-Gatto (AG) the-
orem [4], which states that fV (0) is renormalized only by
terms of at least second order in the breaking of the SU(3)-
flavor symmetry. The estimate of the difference of fV (0)
from its SU(3)-symmetric value is presently the dominant
source of theoretical uncertainty in the extraction of |Vus|
and it will become the dominant one, when the results of
high-statistics experiments, like KLOE and NA48 for K�3
decays, will be available.

The amount of SU(3) breaking due to light quark
masses can be investigated within Chiral Perturbation
Theory (CHPT) by performing a systematic expansion
of the type fV (0) = 1 + f2 + f4 + . . ., where fn =
O[Mn

K,π/(4πfπ)n]. However, only f2 can be computed
unambiguously, while the higher-order terms involve un-
known coefficients of several chiral local operators. Up

to now their numerical impact has been estimated using
phenomenological models, like the famous Leutwyler and
Roos (LR) calculation carried out for K�3 decays using
the constituent quark model [5].

Very recently [6] the SU(3)-breaking effects on fV (0)
for K�3 decays have been estimated using a non-pertur-
bative approach based on the fundamental theory. In [6] a
new strategy has been proposed and successfully applied
to K�3 decays in order to reach the challenging goal of a
≈ 1% error on fV (0) using lattice QCD simulations.

The aim of this contribution is twofold. First, we illus-
trate both the basic features of the procedure of [6] and
the quenched lattice results obtained for K�3 decays. Sec-
ond, we present the results of an exploratory study of the
application of the same strategy to hyperon decays [7],
showing that the same level of precision reached for K�3
decays is attainable also in case of hyperons.

2 Semileptonic K → π�ν decay

The K0 → π− form factors of the weak vector current
Vµ = s̄γµu are defined as

〈π(p′)|Vµ|K(p)〉 = fV (q2)(p + p′)µ + f−(q2)(p − p′)µ , (1)
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where q = p − p′. As usual, we express f−(q2) in terms of
the so-called scalar form factor

f0(q2) ≡ fV (q2) +
q2

M2
K − M2

π

f−(q2) , (2)

so that by construction f0(0) = fV (0).
The procedure developed in [6] to reach the challenging

goal of a ≈ 1% error on fV (0), is based on the following
three main steps:

1) precise evaluation of the scalar form factor f0(q2) at
q2 = q2

max = (MK − Mπ)2;
2) extrapolation of f0(q2

max) to f0(0) = fV (0);
3) subtraction of leading chiral logs and extrapolation of

fV (0) to the physical meson masses.

These steps are described in the next three subsections,
while the details of the simulation can be found in [6].

2.1 Evaluation of f0(q2) at
q2 = q2

max = (MK − Mπ)2

Following a procedure originally proposed in [8] to study
heavy-light form factors, the scalar form factor f0(q2) can
be calculated very efficiently at q2 = q2

max = (MK − Mπ)2
(i.e. p = p ′ = q = 0) from the double ratio of three-point
correlation functions with both mesons at rest:

R0(tx, ty) ≡ CKπ
0 (tx, ty,0,0) CπK

0 (tx, ty,0,0)
CKK

0 (tx, ty,0,0) Cππ
0 (tx, ty,0,0)

, (3)

where the three-point correlation function for the K → π
transition is defined as

CKπ
µ (tx, ty,p,p ′) =

∑

x,y

〈Oπ(ty,y) V̂µ(tx,x) O†
K(0)〉

· e−ip·x+ip ′·(x−y) (4)

with V̂µ being the renormalized lattice vector current and
O†

π = d̄γ5u, O†
K = d̄γ5s the meson interpolating fields.

When the vector current and the two interpolating
fields are separated far enough from each other, the con-
tribution of the ground states dominates, yielding

R0(tx, ty)−−−−−−−→
tx → ∞

(ty − tx) → ∞

〈π|s̄γ0u|K〉 〈K|ūγ0s|π〉
〈K|s̄γ0s|K〉 〈π|ūγ0u|π〉

= [f0(q2
max)]

2 (MK + Mπ)2

4MKMπ
. (5)

There are several crucial advantages in the use of
the double ratio (3). First, statistical uncertainties are
largely reduced, because fluctuations in the numerator
and the denominator are highly correlated. Second, the
matrix elements of the meson sources cancel between nu-
merator and denominator. Third, R0 is independent from
both the improved renormalization constant and the O(a)-
improvement coefficient of the vector current, where a is
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Fig. 1. Values of f0(q2
max), obtained in [6] using (5), versus the

SU(3)-breaking parameter a2∆M2 ≡ a2(M2
K − M2

π).

the lattice spacing. Therefore R0 suffers from discretiza-
tion effects only at order a2. Finally, R0 = 1 in the SU(3)-
symmetric limit at all orders in a. Thus the deviation of R0
from unity depends on the physical SU(3)-breaking effects
on f0(q2

max) as well as on discretization errors, which are
at least of order a2(ms − m�)2. Our result for f0(q2

max) is
not affected by the whole discretization error on the three-
point correlation function, but only by its smaller SU(3)-
breaking part. Similar considerations apply also to the
quenching error, because R0 = 1 in the SU(3)-symmetric
limit holds as well also within the quenched approxima-
tion.

From the plateaux of the double ratio (5) the values of
f0(q2

max) can be determined with an uncertainty smaller
than 0.1%, as it is illustrated in Fig. 1.

2.2 Extrapolation of f0(q2
max) to f0(0) = fV (0)

The extrapolation of f0(q2) from q2
max to q2 = 0 requires

the knowledge of the slope of f0, which in turn implies
the study of the q2-dependence of the scalar form factor.
An important remark is that in order to get f0(0) at the
percent level the precision required for the slope can be
much lower (� 30%), because the values of q2

max can be
chosen very close to q2 = 0 [6].

For each set of quark masses two- and three-point cor-
relation functions can be calculated for mesons with vari-
ous momenta in order to extract the q2 dependence of both
f0(q2) and fV (q2). The latter turns out to be well deter-
mined on the lattice with a statistical error of � 5 ÷ 20%
and its q2-dependence is very well described by a pole-
dominance fit, fV (q2) = fV (0)/[1 − λV q2]. On the con-
trary for the scalar form factor the uncertainties turn out
to be about 5 times larger. As explained in [6] the precision
in the extraction of f0(q2) can be drastically improved by
constructing new suitable double ratios

Ri(tx, ty) =
CKπ

i (tx, ty,p,p ′)
CKπ

0 (tx, ty,p,p ′)
CKK

0 (tx, ty,p,p ′)
CKK

i (tx, ty,p,p ′)
, (6)
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Fig. 2. The form factor f0(q2) obtained from the double ratios
(6) for q2 < q2

max (full dots) and from the double ratio (3) at
q2 = q2

max (open dot), for the quark mass combination ks =
0.13390 and k� = 0.13440. The dot-dashed, dashed and solid
lines correspond to the polar, linear and quadratic fits given
in (7–9), respectively. The inset is an enlargement of the region
around q2 = 0

from which a determination of the ratio of the form factors
f0(q2)/fV (q2) is obtained. The advantages of the double
ratios (6) are similar to those already pointed out for the
double ratio (3), namely: i) a large reduction of statistical
fluctuations; ii) the independence of the improved renor-
malization constant of the vector current, and iii) Ri → 1
in the SU(3)-symmetric limit. We stress that the introduc-
tion of the matrix elements of degenerate mesons in (6) is
crucial to largely reduce statistical fluctuations, because
it compensates the different fluctuations of the matrix el-
ements of the spatial and time components of the weak
vector current.

Thanks to the ratios (6) the statistical uncertainties
on f0(q2) become � 5 ÷ 20%. The quality of the results
is shown in Fig. 2 for one of the combinations of quark
masses used in [6]. The points are paired because both
K → π and π → K transitions are considered.

In order to extrapolate the scalar form factor to q2 = 0
we have considered three different possibilities, namely a
polar, a linear and a quadratic fit:

f0(q2) = f
(pol.)
0 (0)/(1 − λ

(pol.)
0 q2) , (7)

f0(q2) = f
(lin.)
0 (0) · (1 + λ

(lin.)
0 q2) , (8)

f0(q2) = f
(quad.)
0 (0) · (1 + λ

(quad.)
0 q2 + c0 q4) . (9)

These fits are shown in Fig. 2 and provide values of both
f0(0) and the slope λ0, which are consistent with each
other within the statistical uncertainties.

The results obtained for f0(0) agree well with a
quadratic dependence on a2∆M2, as it can be seen from
Fig. 3. This is expected from both lattice artifact contribu-
tions and physical SU(3)-breaking effects, which obey the
AG theorem holding also in the quenched approximation
[6].

Our results for the slope λ0, extrapolated to the phys-
ical meson masses (using a linear dependence in the
quark ones) and given in units of M2

π+ , yield: λ
(pol.)
0 =
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Fig. 3. Values of f0(0) = fV (0), obtained from the quadratic
fit (9), versus (a2∆M2)2. The solid line is the result of the lin-
ear fit f0(0) = 1−A (a2∆M2)2 where A is a mass-independent
parameter

0.0122(22), λ
(lin.)
0 = 0.0089(11) and λ

(quad.)
0 = 0.0115(26).

Our “polar” value λ
(pol.)
0 is consistent with the recent de-

termination from KTeV λ0 = 0.01414 ± 0.00095 [9], ob-
tained using a pole parameterization. Furthermore, the
values obtained for the slope λV agree well with the in-
verse of the squared K∗-meson mass for each combination
of the simulated quark masses. A simple linear extrapo-
lation in terms of the quark masses to the physical val-
ues yields λV = 0.026 ± 0.002 in units of M2

π+ , which
is consistent with the PDG value λV = 0.028 ± 0.002
[2] as well as with the recent measurement from KTeV
λV = 0.02502 ± 0.00037 [9], obtained using a pole param-
eterization.

2.3 Extrapolation of fV (0) to the physical masses

In order to determine the physical value of fV (0) the lat-
tice results of Fig. 3 should be extrapolated to the phys-
ical kaon and pion masses. The problem of the chiral ex-
trapolation is substantially simplified if the AG theorem
(holding also in the quenched approximation) is taken into
account and if the leading (quenched) chiral logs are sub-
tracted. Thus in [6] the following quantity is introduced

R(MK , Mπ) =
1 + fq

2 (MK , Mπ) − fV (0; MK , Mπ)
(a2∆M2)2

(10)

where fq
2 represents the leading non-local contribution de-

termined by pseudoscalar meson loops within quenched
CHPT. The subtraction of fq

2 is a well defined procedure
being finite and scale-independent. The value of f2 in the
unquenched case is known from [5], while its quenched
counterpart is calculated in [6]. Thus, after the subtrac-
tion of fq

2 we expect that R(MK , Mπ) receives large con-
tributions from local operators in the effective theory.
At the same time the quadratic dependence on a2∆M2,
driven by the AG theorem, is already factorized out. Hence
R(MK , Mπ) is a quantity well suited for a smooth poly-
nomial extrapolation in the meson masses. It turns out [6]
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For illustrative purposes we have chosen the case in which a
quadratic fit in q2is used to extrapolate f0 to q2 = 0

indeed that the dependence of R(MK , Mπ) on the meson
masses is well described by a simple linear fit:

R(lin.)(MK , Mπ) = c11 + c12[(aMK)2 + (aMπ)2] , (11)

whereas the dependence on ∆M2 is found to be negligible.
In order to check the stability of the results, quadratic and
logarithmic fits have been also considered:

R(quad.)(MK , Mπ) = c21 + c22[(aMK)2 + (aMπ)2]
+ c23[(aMK)2 + (aMπ)2]2, (12)

R(log.)(MK , Mπ) = c31 + c32 log[(aMK)2 + (aMπ)2]. (13)

In Fig. 4 it is shown that linear, quadratic and logarithmic
functional forms provide equally good fits to the lattice
data with consistent results also at the physical point.

Combining our estimate of R(MK , Mπ) at the physi-
cal meson masses with the unquenched value of f2 (f2 =
−0.023 [5]), we finally obtain [6]

fK0π−
V (0) = 0.960 ± 0.005stat ± 0.007syst (14)

where the systematic error comes mainly from the uncer-
tainties in the functional dependence of f0 on both q2 and
the meson masses. An estimate of quenched effects be-
yond O(p4) is not included. Our value (14) compares with
fK0π−

V (0) = 0.961 ± 0.008 [2], based on the LR result [5].
Using the (old) published K�3 data from [2], our value

(14) implies |Vus| = 0.2202 ± 0.0025, which still deviates
by ≈ 2σ from the CKM unitarity relation. However, using
only the recent high-statistics Ke3 results of [10,11] one
finds substantially higher values, |Vus| = 0.2275 ± 0.0030
and |Vus| = 0.2255 ± 0.0025, which are in good agree-
ment with CKM unitarity. The experimental situation is
expected to be further clarified in the near future when
the results by KLOE [12] (on both charged and neutral
modes) and by NA48 will become available.

Fig. 5. Results for f0(q2
max) versus a2(M2

Σ − M2
n)

3 Semileptonic Σ− → n�ν decay

Semileptonic hyperon decays represent the “baryonic way”
to a precise determination of |Vus|. In this section we
present the results of a preliminary lattice study of fV (0)
for the decay Σ− → n�ν, carried out in [7].

The relevant matrix element of the weak vector current
can be decomposed in terms of the following structures

< n|uγµs|Σ− > = un(p′)
{

γµfV (q2) − iσµνqν

Mn + MΣ
f2(q2)

+
qµ

Mn + MΣ
f3(q2)

}
uΣ(p) (15)

with q = p − p′. As in the case of K�3 decays, one intro-
duces the scalar form factor f0(q2):

f0(q2) = fV (q2) +
q2

M2
Σ − M2

n

f3(q2) , (16)

so that f0(0) = fV (0). Note that the SU(3)-symmetric
value of fV (0) is given by a Clebsch-Gordan coefficient,
equal to (−1) for the Σ− → n transition.

The value of f0(q2) at q2
max = (MΣ − Mn)2 can be

extracted using the double ratio (3), which now reads as

R0 −−−−−−−→
tx → ∞

(ty − tx) → ∞

〈n|s̄γ0u|Σ〉〈Σ|ūγ0s|n〉
〈Σ|s̄γ0s|Σ〉〈n|ūγ0u|n〉 = [f0(q2

max)]
2. (17)

The results obtained for f0(q2
max) are shown in Fig. 5,

where the high precision reached (∼< 0.1%) can be seen.
Given the high accuracy reached at q2

max as well as
the closeness of the values of q2

max to q2 = 0, it is enough
to study the q2-dependence of f0,V (q2) with an accuracy
of ≈ 10 ÷ 20% in order to reach the percent precision
on f0(0). As in the case of mesons [6], the standard form
factor analysis provides values of fV (q2) quite well deter-
mined, whereas for f0(q2) one has to resort to the double
ratios (5), which give access to the quantity f0(q2)/fV (q2).
In Fig. 6 the values of f0(q2) and fV (q2) obtained for a
specific combination of the quark masses used in [7], are
reported. The points are paired because both Σ− → n
and n → Σ− transitions are considered.
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Fig. 6. Results for f0(q2) (a) and fV (q2) (b) versus a2q2. The
dashed and solid lines are a monopole and a dipole fit to the
lattice data, respectively [see (18)]

Fig. 7. Results for fV (0) versus a4(M2
Σ − M2

n)2, obtained
through a monopole (open squares) and a dipole fit (full cir-
cles) in q2. The dashed and solid lines are linear fits, according
to the AG theorem [4]

In order to get the values f0(0) = fV (0) the results
shown in Fig. 6 are fitted using both a monopole and a
dipole functional forms

F (mon.) =
A

1 − q2/B
, F (dip.) =

C

(1 − q2/D)2
, (18)

which nicely describe the lattice data. The dipole parame-
ter

√
D agrees with the value predicted by pole dominance

(the K∗ meson mass) within � 15% accuracy.
Finally in Fig. 7 we collect all the results obtained

for fV (0) in [7]. They clearly exhibit the nice linear de-
pendence expected from the AG theorem. Thus SU(3)-
breaking effects are resolved with a good precision even
within the limited statistics used in [7].

4 Conclusions

We have presented quenched lattice studies of the K → π
and Σ → n vector form factors at zero-momentum trans-
fer, fV (0). Our calculations are the first one obtained us-
ing a non-perturbative method based only on QCD, ex-
cept for the quenched approximation. Our main goal is
the determination of the SU(3)-breaking effects on fV (0),

which is necessary to extract |Vus| from both K�3 and hy-
peron decays. In order to reach the required level of preci-
sion we have employed the double ratio method originally
proposed in [8] for the study of heavy-light form factors.
We have found that this approach allows to calculate the
scalar form factor f0(q2) at q2 = q2

max with a statistical
uncertainty well below 1% for both mesons and baryons.

A second crucial step is the extrapolation of the scalar
form factor to q2 = 0. This has been performed by fitting
accurate results obtained using suitable double ratios of
three-point correlation functions. The values of fV (0) ob-
tained in this way are determined within the percent level
of precision, which is the one required for a significant
determination of |Vus|.

In case of K�3 decays the leading chiral artifacts of
the quenched approximation, fq

2 , have been corrected for
by means of an analytic calculation in quenched CHPT.
After this subtraction, the lattice results can be smoothly
extrapolated to the physical meson masses, obtaining

fK0π−
V (0) = 0.960 ± 0.005stat ± 0.007syst , (19)

where the systematic error does not include an estimate
of quenched effects beyond O(p4).

The impact of our result on the determination of |Vus|
has been briefly addressed. Using the (old) published K�3
data from [2], we obtain |Vus| = 0.2202 ± 0.0025, which
still implies a ≈ 2σ deviation from the CKM unitarity
relation. Using only the recent high-statistics Ke3 results
of [10,11] one finds substantially higher values, |Vus| =
0.2275 ± 0.0030 and |Vus| = 0.2255 ± 0.0025, which are in
good agreement with CKM unitarity.
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